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Efficient Rectification of Distorted Fingerprints
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Abstract— Recently, distortion rectification based on a single
fingerprint image has been shown to be able to significantly
improve the recognition rate of distorted fingerprints. However,
the computational complexity of such a method is too high to be
useful in practice. In this paper, we propose a novel method
for the rectification of distorted fingerprints, whose speed is
over 30 times faster than the existing method. This significant
speedup is due to a Hough-forest-based two-step fingerprint
pose estimation algorithm and a support vector regressor-based
fingerprint distortion field estimation algorithm. Experimental
results on public domain databases show that our method can
achieve as good rectification performance as the existing method
but meanwhile is significantly faster.

Index Terms— Distortion rectification, support vector
regression, pose estimation, Hough forest.

I. INTRODUCTION

F INGERPRINT recognition was originally used for crim-
inal investigation and has gradually extended to appli-

cations such as border control, computer logon, and mobile
payment [1]. One of the main reasons for the widespread
adoption of fingerprint recognition techniques is that the error
rates of state-of-the-art fingerprint recognition algorithms are
very low on fingerprints of high or medium quality [2].

However, recognition rate for low quality fingerprints is
still far from satisfactory, and low quality fingerprints are not
uncommon [1], [3]. One type of low quality fingerprints are
distorted fingerprints, which are usually caused when users
press their fingerprints on sensors improperly. The recognition
rate on distorted fingerprints is still low with most existing
fingerprint recognition algorithms [4]. This limitation has
different influence on different types of biometric systems.
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In negative recognition systems, people in the watch-list may
purposely distort their fingerprints to avoid identification [5].
In positive recognition systems, users may need to press their
fingerprints many times to get verified, and that may reduce
the user experience.

The idea of distortion rectification [6] is to transform a
distorted fingerprint into a normal one so as to increase the
recognition rate of existing fingerprint recognition algorithms
for distorted fingerprints. A recent study shows that distortion
rectification can effectively complete this task. However, this
method is very slow and thus is difficult to find real applica-
tions [7].

In this paper, we present an efficient distortion rectification
method, whose speed is significantly faster than the method of
Si et al. [7]. Given an input fingerprint, the fingerprint should
be registered firstly by pose estimation, and then distortion
detection is performed. If it is detected as normal, the original
fingerprint is directly returned; otherwise, the distortion field
is estimated, and rectification is performed to transform the
distorted fingerprint into a normal one. The whole flowchart
is given in Fig. 1.

Although the overall flowchart is similar to [7], the proposed
algorithm is significantly faster because of two novel methods
for pose estimation and distortion field estimation:

1) Pose estimation consists of two successive steps: Hough
forest [8] based center estimation is first performed and
followed by regression based direction estimation. Such
a two-step estimation method reduces the search space
of pose significantly and is much faster than the multi-
reference based pose estimation algorithm in [7].

2) Thanks to the accurate pose estimation algorithm,
the distortion field can be estimated directly from feature
vectors extracted from registered fingerprints with a
support vector regressor, which is much more efficient
than the time-consuming nearest neighbor search step
in [7].

We conducted extensive experiments on public databases,
including Tsinghua distorted fingerprint database (Tsinghua
DF), FVC2004 DB1, and FVC2006 DB2_A. The results show
that the proposed method can well rectify distorted fingerprints
and improve the matching performance of existing fingerprint
matcher. Meanwhile, the speed of this method is over 30 times
faster than the method in [7].

The following sections of this paper are organized as
follows. In Section 2, we review researches related to distorted
fingerprints. In Section 3, we introduce how to estimate the
pose information of fingerprints. In Section 4, we present the
details of the distorted fingerprint detection and rectification.
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Fig. 1. Flowchart of the proposed distorted fingerprint rectification system.

In Section 5, we describe the experiments and evaluate the rec-
tification performance of the proposed method. In Section 6,
we summarize the study and discuss possible future research.

II. RELATED WORK

There exist several types of methods to overcome the
limitations of automatic fingerprint recognition systems in
recognizing distorted fingerprints, including fingerprint match-
ing with distortion tolerated, distorted fingerprint detection
using special sensors, and distortion rectification.

Many researchers [9]–[14] modify fingerprint matching
algorithms to tolerate a certain degree of distortion, such
that fingerprints with little distortion can match well with
the mated fingerprints. Most approaches [9]–[12] are based
on minutiae matching because minutiae are believed to be
discriminating and reliable. Common methods dealing with
distortion include: globally model the transformation by rigid
transformation [9], [10] or thin plate spline [11] to compensate
for distortion, and locally constrain the distortion [12]. Match-
ing approaches based on image [13] or ridge skeleton [14] also
employ certain distortion tolerant strategies. However, these
methods may produce a high matching score for non-mated
fingerprints, thus may increase the false match rate. Another
drawback of these methods is that distortion tolerant matching
strategy often decreases the matching speed.

Some researchers [15]–[18] proposed hardware solutions
for distortion detection when users are pressing fingerprints.
Distorted fingerprints would be rejected when detected, and
the user may be asked to press fingerprints again. This type
of method has two limitations: (1) hardware replacement is
usually hard to implement and/or expensive, and (2) it cannot
deal with existing distorted fingerprints in databases.

Distortion rectification aims to transform distorted finger-
prints into normal fingerprints based on a single fingerprint
image. This third type of method has two advantages: (1) it
requires no changes to existing automatic fingerprint recog-
nition systems; (2) it can be applied to existing distorted
fingerprints. However, there are very few studies on this
direction.

Senior and Bolle [6] proposed the first distortion rectifica-
tion method based on the assumption that ridges of normal
fingerprints are distributed uniformly. They normalize the
ridge density of the input fingerprint into a fixed value to
remove the distortion. However, their assumption is incorrect
as ridge density of a fingerprint varies significantly across
different regions. Meanwhile, this method does not detect
whether or not the input fingerprint is distorted and is simply
applied to all input fingerprints. In this way, normal finger-
prints may lose ridge density information, and the matching
performance may decrease.

The method of Si et al. [7] consists of distortion detection
and distortion rectification. Fingerprint center and direction
are first estimated by combing singularity detection with
multi-reference based alignment method. Then the distortion
detection is taken as a classification problem solved by support
vector classification. For a fingerprint detected as distorted,
the reference fingerprint with most similar feature map is
retrieved from a distorted reference fingerprint database by the
nearest neighbor approach. Then the distorted input fingerprint
is rectified into a normal one with the distortion field of
the retrieved reference fingerprint. Experimental results show
that this method is much more effective than the method
proposed by Senior and Bolle [6]. But this method is very
time-consuming due to the need to align and compare the
input image with all the reference images both in distortion
detection and rectification process.

III. FINGERPRINT POSE ESTIMATION

The proposed pose estimation algorithm consists of two
steps: finger center estimation and finger direction estimation.
To register a fingerprint, the center of a fingerprint is estimated
firstly by a Hough forest based approach. After the center is
moved to the origin of a fixed coordinate system, the finger
direction is then estimated by a support vector regression
method. Both steps use local ridge orientation and period
information, which are extracted using the method in [19]. The
flowchart of the pose estimation process is shown in Fig. 2.
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Fig. 2. Flowchart of the proposed pose estimation algorithm.

Fig. 3. Flowchart of the proposed center estimation algorithm.

In the following part, we introduce the details of the approach
of center estimation and finger direction estimation.

A. Finger Center Estimation

We propose a Hough forest based method to estimate the
finger center. Hough forest is a classical method of detecting
the position of an object in the computer vision and has
attracted a lot of attention [8]. It is a Hough transform based
approach, where features extracted from local image patches
can cast probabilistic votes for the possible location of the
center of an object.

For an input fingerprint, we firstly sample its ridge orien-
tation and period maps to obtain feature patches and extract
the feature vector from each patch. Then the feature patches
go across each tree in the Hough forest and finally reach the
leaf nodes. The offset vector information stored in each leaf
node would cast probabilistic votes to the probable position of
the center. We can then obtain the Hough image by adding the
probabilistic votes from all patches and estimate the fingerprint
center with it. The whole flowchart of fingerprint center is
shown in Fig. 3.

In the following, we describe how to train the Hough forest
and how to estimate the center of a fingerprint with the Hough
image. In the forest training part, we describe the details of
patch sampling, feature extraction, and tree construction.

1) Hough Forest Training: Hough forest is a Hough based
random forest. Thus its realization is similar to that of a
random forest. We choose image patches uniformly sampled in
training images as the training subset. Each patch corresponds
to a feature vector x, a patch label c, and an offset vector d .

The binary patch label c represents whether the patch is
near the center of the fingerprint. c = 1 when the horizontal
and vertical distances between the center of the patch and
that of the fingerprint are both less than 3 times of the patch
size (patch size = 40 pixels). The patch label is not used to
discriminate the fingerprint area and the background, because
patches far away from the finger center may provide inaccurate
information. The offset vector d represents the offset vector
between the center of a local patch and the finger center.

The random forest is trained under the supervision of
patch labels c and offset vectors d . When training each tree,
we randomly select features for judging at each non-leaf node.
According to the judging result, each sample chooses to go to
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Fig. 4. The sampling grid for extracting the feature vectors covers the
whole image patches extracted from the ridge orientation map and period
map. The feature vector extracted from the two patches is defined as
{[sin (2Oi ) cos(2Oi ) Pi ]} where Oi represents the orientation of the
sampling point and Pi represents the period of the sampling point. l represents
the number of the sampling points in two patches.

the left child or the right child of the node until it reaches the
leaf node. A constructed node is declared as a leaf node when
the depth of the node reaches a maximum (depthmax = 15)
or the number of the samples to reach the node is equal
to the minimum (nummax = 20). The leaf node stores the
information of the samples which reach the node, including
the proportion of the samples whose patch label is 1 and their
offset vectors. After the forest is constructed, each test sample
goes across each tree in the same way as during the training.
The information stored in the node that the input sample finally
arrives at casts the votes for the probable position of the center.

a) Patch sampling: A total of 400 manually registered
fingerprints are chosen as training images in the training subset
of Tsinghua DF database [7], which is publicly available at
http://ivg.au.tsinghua.edu.cn/dataset/TDFD.php.

For each training fingerprint, we sample uniformly in the
feature figures to obtain the training patches. The interval of
the sampling grid is 40 pixels, and the size of a local patch
is 80 × 80 pixels. To avoid sampling too many patches in the
background, sampling is limited only in the fingerprint area.
Patches in the area below the center are not used for training,
because the lower area of the orientation map of a fingerprint
is similar to the upper area while their orientation of the offset
vector is different, which may mislead the center estimation.

b) Feature selection: To increase the efficiency of train-
ing and testing, feature vectors sampled in each local feature
patch is used as the training input, which is shown in Fig. 4.
The interval of sampling grid is 16 pixels. In this way, we can
get a 3l dimensional feature vector {[sin(2Oi ) cos(2 Oi ) Pi ]}
where Oi and Pi represent the local ridge orientation and
period at the i th sampling point, and l is the number of the
sampling points in an image patch.

c) Tree construction: The process of the construction of
a tree in the Hough forest is similar to that in [8].

At each non-leaf node in a tree, the training sample chooses
to go to the left or the right child according to a binary
judgment. Here, we compare the value of the feature vector for
the judgment. Let x p and xq denote two features in the feature

vector, and τ be the comparison threshold, the judgment is:
if x p − xq > τ or not. Here, the comparison threshold τ is
chosen in the optional range to maximize the purity of the two
kinds of the samples after split.

Two methods under the supervision of patch labels and
offset vectors are used for purity quantization. As for the
purity of patch labels, we use the fundamental entropy based
measurement method:

Uc = −clogc − (1 − c)log(1 − c). (1)

The purity of the offset vectors is defined as:

Ud =
∑

i:ci =1

(di − d)2 (2)

where the d represents the mean of all the offset vectors,
and patches in background whose label ci = 0 are neglected.
The purity of the splitting is calculated by combining the two
methods above:

U = Uc + Ud . (3)

In consideration of decreasing both the purity of the classifi-
cation label and the offset vector, all the samples which arrive
at the leaf node have a small degree of uncertainty.

2) Center Estimation With Forest Testing: Given an input
fingerprint, the test feature patches and the test feature vectors
are both sampled in the same manner as at the training time.
Due to the unknown position of center, patches are sampling
in the upper 3/5 fingerprint area to avoid sampling many in
the lower area. Each test sample goes across each tree in
the Hough forest and finally reaches a leaf node. The Hough
image is then obtained by adding the probabilistic votes to the
probable position of the center predicted by the offset vectors
stored in the leaf node. The position of the maximum of the
Hough image is then seen as the estimated center of the test
fingerprint.

Usually, the closer to the real center the patch is, the more
reliable vote it will provide. In fact, it is difficult to find the
image patches near the real center to cast reliable votes. Thus
here two iterative calculations are used. The processes of the
two calculations are nearly the same, which is shown in Fig. 3,
but the method of obtaining the input local patches and how
to use the Hough image are different.

In the first calculation, the whole fingerprint is sampled
to get the input local patches. As the local patches near the
real center are expected as the input for the next calculation,
the points that the first ten maximum values in the Hough
image are at are selected as the sample points in the second
calculation. Generally, most of the ten points are near the real
center though the position of the maximum is not the accurate
estimation. Therefore, it is possible to select the patches near
the real center to cast votes to achieve a more accurate
result after the first calculation (See Fig. 5 for an example).
In the second calculation, the new input is chosen from the
sample points achieved before, and the position of maximum
value in the Hough image is chosen as the estimated center
of the input fingerprint.
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Fig. 5. The estimated center and the Hough image in two iterations. After the first iteration, the vote distribution in the Hough image is not concentrated
and thus the estimated center (blue circle) is far away from the true center point (red circle). After the second iteration, the vote distribution in the Hough
image is more concentrated and the center estimation is more accurate. (a) The first iteration. (b) The second iteration.

B. Finger Direction Estimation

The finger direction is estimated by the support vector
regression after the center is estimated. It is defined by
the direction which is vertical to the finger joint. When
given an input image, we just need to estimate the rotation
angle between the finger direction and the vertically upward
direction.

To generate the training data, a total of 400 manually
registered fingerprints are chosen, which are the same as
the training data for center estimation. The rotation angle of
these registered fingerprints are regarded as 0 degree. Then
we artificially add rotation to the 400 registered images, and
the rotation angle is from −30 degrees to 30 degrees by
5 degrees. In this way, each fingerprint image can generate
12 more rotated images. All the 5200 images are used for the
regressor training, and their corresponding rotation angles are
taken as the training targets. In contrast to the discrete rotation
angles estimated by the method of Si et al. [7], the angles
estimated here are continuous, which is more in line with the
real situation.

The feature vector is obtained by sampling only the orien-
tation map, as the orientation map provides main information
on the rotation angle. The sampling grid covers the whole
fingerprint and the sampling interval is 16 × 16 pixels. The
feature vector is defined as {[sin(2 Oi ) cos(2 Oi )]}, where
Oi is the sampled orientation value.

Given the training data, the least square support vector
method is used to train the regressor. We use the LSSVM
toolbox [20] directly, and the parameters are set to RBF kernel,
regularization parameter = 10, and kernel function parameter
= 100. Fig. 6 shows the estimated poses of six fingerprints
with different pattern types. Quantitative evaluation on large
databases will be presented in the experiment section.

IV. DISTORTION DETECTION AND RECTIFICATION

Distorted fingerprint detection is taken as a two-class classi-
fication problem, which is solved by support vector classifica-
tion. Distortion rectification, of which the key is distortion field
estimation, is taken as a regression problem, which is solved

by support vector regression. With the estimated distortion
field, rectified fingerprints can be obtained by reverse image
transformation. In the following part, we introduce how to
select the features, detect distorted fingerprints, estimate the
distortion field, and perform image transformation.

A. Feature Selection

We use the same feature vectors in distortion detection
and rectification. Features are uniformly sampled in the ridge
period map and orientation map of the registered fingerprint.
The sampling interval is 16 × 16 pixels in both maps.

Similar to [7], the sampling grid in the orientation map
covers only the area above the center because the upper
area of the orientation map is similar to the lower area and
usually produces greater variations than the lower area if the
fingerprint is distorted. The sampling grid in the period map
covers all the fingerprint area. The feature vector is defined as
{[sin(2 Oi ) cos(2 Oi ) Pi ]}. It is similar to that in the procedure
of pose estimation, but it is a 2 l1 + l2 dimensional vector,
where l1 and l2 represent the number of the sampling points
in the orientation map and period map, respectively.

B. Distortion Detection

A total of 500 fingerprints are used for training, which
include 200 pairs of normal and distorted fingerprints from
the training subset of Tsinghua DF database and 100 normal
fingerprints in FVC2002 DB1_A. The distorted fingerprints
are seen as positive samples, and the normal fingerprints are
seen as negative samples.

LibSVM [21] is used to train a support vector classifier.
All parameters used in the LibSVM are default ones. Specif-
ically, the RBF kernel rather than the quadratic polynomial
kernel is used.

C. Distortion Rectification

1) Regression Target: The regression target of the distortion
rectification is the distortion field of the distorted fingerprints.
We use the coefficients on the principle components of the
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Fig. 6. Estimated poses for six fingerprints of different pattern types. The center is indicated by the circle and the finger direction is indicated by the arrow.
(a) Whorl. (B) Plain arch. (c) Tented arch. (d) Left loop. (e) Twin loop. (f) Right loop.

distortion field to represent the distortion field, following the
method of Si et al. [7]. A total of 200 pairs of normal and
distorted fingerprints from the training subset of Tsinghua DF
database are used to compute the distortion fields between
them. The distortion field is estimated by the thin plate spline
method with the minutiae pairs tracked in the process of
fingerprint collection. It is defined as the difference between
the grid vector of the normal fingerprint and the corresponding
distorted fingerprint. Let fi (i = 1, . . . , ntrain) denotes the
distortion field of the i th pair of training fingerprints, where
ntrain = 200. After all the distortion field of the distorted
fingerprints is calculated, the principal components are ana-
lyzed. Let e j denotes the eigenvector and λ j denotes the
eigenvalue of the covariance matrix cov(F), where F is the
overall difference matrix of all the distortion fields. Then the
distortion field of each fingerprint can be represented as:

fi = f̄ +
T∑

j=1

k j
√

λ j e j (4)

where ki is the coefficient on the eigenvector, T is the number
of all the principle components, and f̄ is the mean distortion
field. The coefficients {ki} (i = 1, . . . , t) are taken as the
regression target, where t is the number of the selected
principle components.

To determine the value of t , we change the value from
two to six and compare both the accuracy and speed of the
experiments. The results show that choosing the first two
principal components is the best.

It is important to note that the coefficient here is continuous
while that in the method of Si et al. [7] is discrete, though
both methods choose the first two principal components as the
approximation of the distortion field.

2) Regressor Training: After the input feature vector and
the regression target are obtained, the least square support
vector method is used to train the regressor. We use the
LSSVM toolbox [20] directly, and the parameters are also
set to RBF kernel, regularization parameter = 10, and kernel
function parameter = 100.

A total of 400 fingerprint images (200 normal fingerprints
and 200 distorted fingerprints) are used for training, the same
as the training images in the pose estimation process. Taking
normal fingerprints into account can prevent the matching
scores of normal fingerprints, which are misclassified as dis-
torted fingerprints from decreasing after rectification during
the test.

D. Image Transformation

The distorted fingerprint can be transformed to a normal one
with the estimated distortion field by image transformation.
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Fig. 7. Four examples of distortion field estimation and rectification. For each example, the left are the origin fingerprints and the red transformation grids
overlaid on them are the distortion fields estimated by the proposed algorithm. The right are the fingerprints after rectification. The number below each
fingerprint is the VeriFinger matching score between it and its mated fingerprint.

When we obtain the estimated coefficients of the distortion
field {ki }, the estimated distortion field can be approximated
with the similar calculation as Equation (4), but using only
selected principle components. With the estimated coefficients
of the distortion field, we can obtain a transformation grid,
with which a rectified fingerprint can be obtained by the
B-spline transformation.

The matching score is used for the evaluation of rec-
tification. Fig. 7 shows four examples of distortion field
estimation and the rectified fingerprints. Matching scores are
computed using a commercial fingerprint recognition SDK,
VeriFinger 6.2 [22]. The matching scores of the four distorted
fingerprints greatly increase after rectified with the estimated
distortion field. In other words, the distortion between the dis-
torted fingerprint and its mated fingerprint is greatly reduced,
because the higher matching score suggests the rectified fin-
gerprint be more similar with its mated fingerprint, which is
considered normal.

V. EXPERIMENT

In this section, we first evaluate the performance of pose
estimation and then evaluate the performance of distortion
rectification. The evaluation is based on experiments on

three public domain fingerprint databases: FVC2004 DB1,
FVC2006 DB2_A, and the testing subset of Tsinghua
DF database. The details of the databases are described
in Table I.

A. Performance of Fingerprint Pose Estimation

We compare the estimation errors of the proposed pose
estimation approach with that of the method of Si et al. [7] and
the method of Yang et al. [23] to evaluate the performance.
The estimation error is computed by comparing the esti-
mated finger center and finger direction with those manually
marked.

The probability distribution of estimation errors on Tsinghua
DF is shown in Fig. 8. In the method of Si et al. [7],
the fingerprint center is estimated by the Poincaré index based
algorithm [24] if the core point can be detected, otherwise is
estimated by a full search. Therefore, the comparison is made
for two cases whether the core point can be detected. From
Fig. 8, it is clear that:

1) For the fingerprints with core point, the performance of
the proposed finger center estimation is slightly better
than that of the Poincaré index based algorithm and far
better than the approach of Yang et al.
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TABLE I

FINGERPRINT DATABASES USED IN THE EXPERIMENT AND MATCHING PROTOCOL

Fig. 8. The probability distributions of estimation errors of finger center and finger direction estimation error on Tsinghua DF database.

2) For the fingerprints without core point, the proposed
center estimation approach produces the most accurate
results among three pose estimation approaches.

3) For all the fingerprints, the proposed finger direction
estimation method greatly increase the estimation accu-
racy.

The estimation error is analyzed in Table II. Taking into
account the error of manual annotation, the estimation is
deemed as wrong when the distance between the estimated
center and the center manually marked is more than 15 pix-
els or the angle between the estimated finger direction and
that manually marked is more than 10 degrees. From Table II,
the proposed method produces fewer estimation error of the
finger center and direction for fingerprints with and without
core point.

B. Performance of Distortion Rectification

To make a quantitative and objective evaluation of distortion
rectification algorithms, four fingerprint matching experiments

are conducted on three public databases: FVC2004 DB1,
FVC2006 DB2_A, and Tsinghua DF database. To get a
more reasonable assessment, we choose all the 89 distorted
fingerprints (along with 89 mated normal fingerprints) in
FVC2004 DB1 database to compose a distorted subset and also
do experiments on it. The input images of the four matching
experiments are the original fingerprints without rectification,
fingerprints rectified by the method of Si et al. [7], fingerprints
rectified by the method of Senior and Bolle [6], and finger-
prints rectified by the proposed approach. Matching scores are
computed using a commercial fingerprint recognition SDK,
VeriFinger 6.2. Matching protocol on three databases is given
in Table I.

We firstly use the scatter plot to compare the matching
scores with and without rectification (by the proposed algo-
rithm) on the distorted subset of FVC2004 DB1 and Tsinghua
DF database. As mentioned before, the matching score is
an objective measurement of the performance of distortion
rectification. As we can see from Fig. 9, the matching scores
of most fingerprints increase after rectification (points above
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TABLE II

STATISTICS OF POSE ESTIMATION ERROR ON TSINGHUA DF DATABASE

Fig. 9. The scatter plot of VeriFinger matching scores with/without rectification on two databases: (a) Tsinghua DF database and (b) distorted subset of
FVC2004 DB1.

Fig. 10. The VeriFinger matching score distributions with/without rectification on two databases: (a) Tsinghua DF database and (b) distorted subset of
FVC2004 DB1.

the dotted line), which suggests that most distorted fingerprints
have been rectified successfully.

The distributions of matching scores with and without
rectification on Tsinghua DF database and the distorted subset
of FVC2004 DB1 are shown in Fig. 10 in order to show the
effect of rectification on the matching scores of non-mated
fingerprints. It is clear that the matching scores of non-mated
fingerprints do not increase while the matching scores of mated
fingerprints increase a lot after rectification. The distribution
of matching scores of non-mated fingerprints after rectification
is almost unchanged because it is dominated by very low
matching scores.

Then the Detection Error Tradeoff (DET) curves using
VeriFinger 6.2 SDK on four databases are plotted to com-
pare the performance of the proposed method with that of
previous method. Since the matching scores of VeriFinger
are linked to the false match rate (FMR), this allows us to
examine the false non-match rates (FNMR) at very low FMRs
without performing impostor matches (very limited number
of impostor matches can be done at our databases). As shown
in Fig. 11, on all the three databases containing many distorted
fingerprints, both the method of Si et al. and the proposed
approach greatly increase the matching accuracy (the proposed
method is slightly better) while the method of Senior and
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Fig. 11. The DET curves of four matching experiments using VeriFinger 6.2 SDK on four databases: (a) Tsinghua DF database, (b) FVC2004 DB1,
(c) distorted subset of FVC2004 DB1, and (d) FVC2006 DB2_A.

Bolle reduces the matching accuracy. On FVC2006 DB2_A,
which mainly contains normal fingerprints, both method of
Si et al. and the proposed approach do not have obvious
negative impact. Compared with the method of Si et al.,
the performance of the proposed algorithm is only slightly
better, because (1) on Tsinghua DF database, the improvement
room is already very small, and (2) on FVC2004 DB1, most
of the remaining low genuine matching scores are due to poor
image quality, not distortion.

In order to make the conclusions more convincing, matching
experiments are also conducted using the MCC SDK [25],
which is a state of the art fingerprint matcher with pub-
lished algorithm. Minutiae are still extracted using VeriFinger
SDK. We used the LSA-R (the most accurate version of
MCC) to compute the similarity between two fingerprints.
The DET curves using MCC SDK on four databases are
shown in Fig. 12, and the same conclusions can be drawn.
The proposed approach achieves better performance on the
databases which contain many distorted fingerprints and does
not reduces the matching accuracy of normal fingerprints.

We also give several examples to show the perfor-
mance of rectification, which are shown in Fig. 13.
In these cases, the matching scores of the fingerprints
rectified by the proposed approach are much higher than
rectified by the nearest neighbor approach proposed by
Si et al. [7].

Though the proposed rectification method has already well
rectified most distorted fingerprints, the matching scores of
several fingerprints drop after rectified, which are also shown
in Fig. 9 (the points under the blue line), and the reasons
for the failure are also shown. Reasons for the unsuccessful
rectification include: the normal fingerprint is detected as dis-
torted (false positive of detection) and rectified unnecessarily,
and the distorted fingerprint is wrongly rectified. Distorted
fingerprints which are detected as normal (false negative of
detection) are not rectified, and thus the matching scores
maintain unchanged. Note that false positive detection is
not necessarily bad because even normal fingerprints may
contain distortion of certain degrees, and thus rectification
is beneficial for many normal fingerprints. The number of
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Fig. 12. The DET curves of four matching experiments using MCC SDK on four databases: (a) Tsinghua DF database, (b) FVC2004 DB1, (c) distorted
subset of FVC2004 DB1, and (d) FVC2006 DB2_A.

TABLE III

STATISTICS OF RECTIFICATION ERROR

the fingerprints rectified unsuccessfully on two databases,
and the cause of error are analyzed in Table III. The result
is also compared with that of the method of Si et al.
On both databases, the proposed approach produces fewer
errors.

The rectification error is mainly influenced by the poor
quality of the input fingerprints. Based on our observation,
the fingerprints with poor quality can be divided into two
categories: fingerprints with bad pose, which have low cen-
ters or are non-frontal and fingerprints with low image quality.
Fingerprints with low centers are usually locally distorted,
which cannot be correctly rectified by global distortion cor-
rection. Fingerprints which are non-frontal or with low image

quality have insufficient information while the regressor is
trained using fingerprints of good quality. Two examples of
these two cases are shown in Fig. 14. In addition, the error
of center estimation and distortion detection may also lead to
unsuccessful rectification.

C. Efficiency Analysis

We analyze the efficiencies of the proposed approach and
the method of Si et al. on Tsinghua DF database and
FVC2004 DB1. We calculate the average time of distor-
tion detection and rectification on a PC with 3.30 GHz
CPU. It should be noted that, rectification is not applied to
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Fig. 13. Five examples of performance of rectification. The number under each fingerprint is the VeriFinger matching score between it and the mated
reference fingerprint.

fingerprints which are detected as normal.Therefore, the aver-
age time of rectification only refers to distorted fingerprints.

As is shown in Table IV, the method of Si et al. has
very different running times for fingerprints with and without
core point as they use different methods for two different
cases. For the distortion detection process, it takes about
15 times longer time for fingerprints without core point than
for fingerprints with core point. For the distortion rectifi-
cation process, it takes very long time for both kinds of
fingerprints.

Our approach can apply to both cases, and the efficiency
is significantly better. For the distortion detection process,
only 0.4∼0.5 seconds are needed for both cases. Specif-
ically, the efficiency increases by about 30 times for fin-
gerprints without core point. For the distortion rectification
process, the efficiency for both cases increases greatly by
over 150 times. Due to the efficient distortion detection and
rectification processes, the total running time for a distorted
fingerprint is less than one second and is over 30 times faster
than the method of Si et al.
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Fig. 14. Two examples of unsuccessful rectification: (a) fingerprint with bad pose (only the fingertip is captured), (b) fingerprint with low quality. The
number under each fingerprint is the VeriFinger matching score between it and the mated fingerprint.

TABLE IV

COMPUTATIONAL COSTS (SECOND) OF MAJOR STEPS OF THE METHOD OF SI et al. AND THE PROPOSED METHOD

VI. CONCLUSION

In a fingerprint recognition system, distortion greatly influ-
ences the matching performance of fingerprints. A recent study
shows that distortion rectification can effectively improve the
recognition rate of distorted fingerprints. However, this method
is too slow to be used in practical applications.

In this paper, we present an efficient distortion rectification
method, whose speed is over 30 times faster than the existing
method. The proposed method comprises two main parts:
a two-step pose estimation method including Hough forest
based center estimation and regression based finger direction
estimation, and a support vector regression based distortion
field estimation method.

We do several experiments to evaluate the performance
of the proposed rectification method on three databases:
FVC2004 DB1, FVC2006 DB2_A and Tsinghua DF database.
The results show that the rectification performance of the pro-
posed method is comparable with that of the existing method,
but the speed improves significantly. The total detection time
and rectification time for a distorted fingerprint is less than
one second.

The limitation of the proposed pose estimation method is
that the error of finger center estimation greatly influences the
accuracy of finger direction estimation. Besides, fingerprints
which are obtained by smaller sensors (such as fingerprint
sensors in smart phones) usually have very small effective
areas. The proposed pose estimation method may not be
applicable for these fingerprints.

The limitation of the proposed rectification method is that
the types of distortion in the training set of Tsinghua DF
are limited and cannot cover all possible distortion fields in

practice, especially distortion fields of some latent fingerprints
from crime scenes. Another limitation is that the current
algorithm is trained and tested on plain fingerprints whose
image quality is not very low. It is not very effective for
distorted latent fingerprints.

Future work can focus on: (1) more accurate pose estimation
for low quality fingerprints; (2) the rectification for non-frontal
fingerprints and latent fingerprints, which have very limited
information and different distortion types; (3) the rectification
for fingerprints directly obtained by cameras of smart phones,
whose distortion is caused by rotated fingers or changing
viewpoints.
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